Variability of moisture recycling using a precipitationshed framework

نویسندگان

  • P. W. Keys
  • E. A. Barnes
  • L. J. Gordon
چکیده

Recent research has revealed that upwind land-use changes can significantly influence downwind precipitation. The precipitationshed (the upwind ocean and land surface that contributes evaporation to a specific location’s precipitation) may provide a boundary for coordination and governance of these upwind–downwind water linkages. We aim to quantify the variability of the precipitationshed boundary to determine whether there are persistent and significant sources of evaporation for a given region’s precipitation. We identify the precipitationsheds for three regions (i.e., western Sahel, northern China, and La Plata) by tracking atmospheric moisture with a numerical water transport model (Water Accounting Model-2layers, or WAM-2layers) using gridded fields from both the ERA-Interim (European Reanalysis Interim) and MERRA (Modern-Era Retrospective Analysis for Research and Applications) reanalyses. Precipitationshed variability is examined first by diagnosing the persistence of the evaporation contribution and second with an analysis of the spatial variability of the evaporation contribution. The analysis leads to three key conclusions: (1) a core precipitationshed exists; (2) most of the variance in the precipitationshed is explained by a pulsing of more or less evaporation from the core precipitationshed; and (3) the reanalysis data sets agree reasonably well, although the degree of agreement is regionally dependent. Given that much of the growing-season evaporation arises from within a core precipitationshed that is largely persistent in time, we conclude that the precipitationshed can potentially provide a useful boundary for governing land-use change on downwind precipitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of continental recycling in intraseasonal variations of continental moisture as deduced from model simulations and water vapor isotopic measurements

[1] Climate models suggest an important role for land-atmosphere feedbacks on climate, but exhibit a large dispersion in the simulation of this role. We focus here on the role of continental recycling in the intraseasonal variability of continental moisture, and we explore the possibility of using water isotopic measurements to observationally constrain this role. Based on water tagging, we des...

متن کامل

Megacity precipitationsheds reveal tele-connected water security challenges

Urbanization is a global process that has taken billions of people from the rural countryside to concentrated urban centers, adding pressure to existing water resources. Many cities are specifically reliant on renewable freshwater regularly refilled by precipitation, rather than fossil groundwater or desalination. A precipitationshed can be considered the "watershed of the sky" and identifies t...

متن کامل

Recycling of moisture in Europe: Contribution of evaporation to variability in very wet and dry years

Evaporation is a key parameter in the regional atmospheric water cycle. Precipitation recycling is defined as the contribution of water that evaporates from a region to precipitation within the same region. We apply a dynamic precipitation recycling model, which includes a dynamic moisture storage term, to calculate the warm season variability of the precipitation recycling over central Europe ...

متن کامل

The Impact of Land–Atmosphere Interactions on the Temporal Variability of Soil Moisture at the Regional Scale

This study examines the impact of the nonlinear dynamics of soil-moisture feedbacks to precipitation on the temporal variability of soil moisture at the regional scale. It is a modeling study in which the large-scale soil-water balance is first formulated as an ordinary differential equation and then recast as a stochastic differential equation by incorporating colored noise representing the hi...

متن کامل

Surface–Atmosphere Moisture Interactions in the Frozen Ground Regions of Eurasia

Climate models simulate an intensifying Arctic hydrologic cycle in response to climatic warming, however the role of surface-atmosphere interactions from degrading frozen ground is unclear in these projections. Using Modern-Era Retrospective Analysis for Research and Applications (MERRA) data in high-latitude Eurasia, we examine long-term variability in surface-atmosphere coupling as represente...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014